Artificial Intelligence |
Artificial Intelligence: A Modern Approach |
Berkeley's CS188: Introduction to Artificial Intelligence Fall 2018
|
Bilibili
Youtube
|
|
Harvard CS50: Introduction to AI with Python
|
Bilibili
Youtube
|
Data Science |
Introduction to Data Science:
Data Wrangling and Visualization with R
Statistics and Prediction Algorithms Through Case Studies
|
Harvard CS109: Data Science
|
Bilibili
|
Computational and Inferential Thinking: The Foundations of Data Science |
UCB Data8: The Foundations of Data Science Spring 2022
|
Youtube
|
Learning Data Science |
UCB Data100: Principles and Techniques of Data Science Spring 2024
|
Youtube
|
Machine Learning |
|
Machine Learning Specialization
|
Bilibili
Youtube
|
An Introduction to Statistical Learning with Python |
Stanford Statistical Learning
|
Bilibili
Youtube
|
Learning From Data |
Caltech CS156: Machine Learning
|
Bilibili
Youtube
|
|
Stanford CS229: Machine Learning
|
Bilibili
Youtube
|
Deep Learning Foundations and Concepts
|
UCB CS189: Introduction to Machine Learning Spring 2024
|
Bilibili
|
|
CMU 10-414/714: Deep Learning Systems
|
Official
|
Machine Learning Compilation |
Machine Learning Compilation
|
Bilibili
Youtube
|
Deep Learning |
|
Deep Learning Specialization
|
Bilibili
Youtube
1,
2,
3,
4,
5
|
|
CS231N: CNN for Visual Recognition (Spring 2017)
|
Bilibili
Youtube
|
|
CS224N: Natural Language Processing (Winter 2023)
|
Bilibili
Youtube
|
|
CS224W: Machine Learning with Graphs (Fall 2021)
|
Bilibili
Youtube
|
Deep Learning |
UMich EECS 498-007 / 598-005: Deep Learning for Computer Vision (Fall 2019)
|
Bilibili
Youtube
|
|
UCB CS285: Deep Reinforcement Learning (Fall 2023)
|
Bilibili
Youtube
|
Further Learning |
Pattern Recognition and Machine Learning |
MIT 6.867: Machine Learning
|
|
All of statistics |
CMU 36-705: Intermediate Statistics
|
Youtube
|
Convex Optimization |
EE364A Convex Optimization Ⅰ
EE364B Convex Optimization Ⅱ
|
Bilibili
Youtube
|
Probabilistic Machine Learning |
|
|
The Elements of Statistical Learning |
|
|
|
CMU 10-708: Probabilistic Graphical Models
|
Bilibili
Youtube
|
|
Columbia STAT 8201: Deep Generative Models
|
|
|
|
U Toronto STA 4273: Minimizing Expectations
|
|
|
|
Stanford CS229M: Machine Learning Theory
|
Bilibili
Youtube
|